2021教师资格笔试备考:数学思想方法大盘点(二)由北京教师招聘考试网提供:更多关于2021教师资格笔试备考,数学思想方法大盘点的内容请关注教师资格考试网/北京教师招聘考试网!或关注北京华图微信公众号(bjhuatu),北京教师考试培训咨询电话:400-010-1568。
点击查看:教师考试辅导课程
数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题,通常混称为“数学思想方法”。数学思想方法是数学基础知识的重要组成部分,教材中没有专门的章节介绍它,而是伴随着基础知识的学习展开。我们在学习中一定要重视对常用数学思想方法的总结与提炼,它们是数学知识的精髓,是解题的指导思想,使人受益终身。特别是对于招教考试笔试而言,许多题目都渗透这数学方法的应用,采用正确的数学思想方法进行解题,可以大大节省解题时间。本文列举了数学解题中常用的思想方法,并配以简单题目进行举例,方便大家的理解和应用。
一、函数与方程思想
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,要善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
方程思想是指在解决数学问题时,从分析问题的数量关系入手,分析已知量与未知量之间的制约和联系,通过布列方程和解方程将未知量转化为已知量,最终使问题获得解决的一种数学思想。
例:扬子江药业集团生产的某种药品包装盒的侧面展开图如图所示,如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积。
分析:这是一个求长方体的体积问题,要解决它必须求出长方体的长、宽、高。由于题目中已给出三者之间的关系,因此可以通过设未知数列方程来求解。
二、用字母表示数的思想
用字母表示数的思想,也就是代数思想。用字母表示数,用含有字母的式子表示现实生活中的数量关系,使我们从算术跨进了代数的大门。
例:扑克牌游戏
小明背对小亮,让小亮按下列四个步骤操作:
第一步,分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同;
第二步,从左边一堆拿出两张,放入中间一堆;
第三步,从右边一堆拿出一张,放入中间一堆;
第四步,左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆。
这时,小明准确说出了中间一堆牌现有的张数,你认为中间一堆牌现有的张数是( )。
分析:本题初看上去过程比较复杂,若用字母表示出第一步后每堆牌的张数,列代数式并化简,很快能得到结果。
设第一步后每堆牌的张数为x,则第四步后中间一堆牌的张数是x+2+1-(x-2)=5
三、主元思想
在解字母系数方程时,我们将未知数以外的字母当成常数处理,这就是主元思想。
四、特殊与一般的辩证思想
“从特殊到一般”就是从特殊、个别的事例中推测一般规律的过程,是一个归纳、创新的过程。“从一般到特殊”是解决数学问题的一种思想方法,特殊情形有时掩盖了问题的实质,从一般情形入手,容易发现解题思路。用字母表示数,归纳猜想规律等都是运用了从特殊到一般的思想,而求代数式的值则是典型的从一般到特殊思想的应用。
★教师考试备考资料包【教资+招教】★
手机号: | ||
所属地区: | ||
——推荐阅读——
华图在线APP--全年模考|30W+题库|看视频 刷题
(编辑:刘然)贴心微信客服
微信公众号